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SUMMARY

A simplified mathematical model of the transport of chemically reacting
species in the microcirculatory system is presented. The differential equation
describing mass transport in the capillary is derived. An order of magnitude
analysis of the individual terms in the diffusion equation leads to some simpli-
fications and to the consideration of two principal regimes of interest which are
defined in terms of a parameter that arises from the differential equations.

The parameter suggests some "larger scaled" experimental models. A number of
closed-form solutions of the differential equations are presented for special
cases. The "general" case is discussed and a means for studying it is suggested.

INTRODUCTION

It is well known that in the microcirculatory system there are various types
and sizes of capillaries and that, correspondingly, the manner in which cells and
plasma pass through these capillaries varies considerably (drawings of four types
of muscle capillaries in guinea pigs obtained from ref. 1 are shown in ref. 2).

Generally, cells pass through capillaries in single file and are deformed by
the capillary wall. In some instances the capillary wall is also deformed notice-
ably, but in others it is not. It has been observed that under some circumstances,
cells trail one another by an appreciable distance through the capillary, while
under other circumstances the cells move through the capillary butted against one
another forming an almost continuous chain. It is the latter continuous chain of
cells moving through a capillary that will be called the classical capillary and
is the subject of this study.

It is reasonable to expect that chemical specles are exchanged between blood
and tissues by a variety of mechanisms. Transport of chemical species may be
accomplished by convection (i.e., by bulk flow associated with the mass motion of
the cells and fluids), molecular diffusion relative to the mass motion, or other
rhenomena. Transport by an interesting convective flow pattern in the plasma
separating two cells has recently been investigated and reported in references 2
and 3, while that by diffusion (including diffusion through tissues) has been
examined and reported in references 4 through 8.



The present analysis considers the transport of species 1 by both the mass
motion of the train of cells and by diffusion relative to the mass motion. It
includes the exchange of chemical species through a semipermeable wall separating
the cellular fluid and the surroundings. These surroundings may be either an
annulus of plasma around the cells or whatever exists outside the capillary wall,
provided the cell wall and capillary wall are in sufficiently close contact that
they can be lumped together as a single semipermeable barrier. Although it is
recognized that in ordinary circumstances chemical reactions do not occur to a
significant extent in the cells, such reactions are included in the theory so
that the results may apply as well to extracrdinary circumstances in which chemi-
cal changes do occur (e.g., from the introduction of foreign matter by inhala-
tion - Nz0, COz, or CO, or by injections into either the blood or tissue). Both
the steady and unsteady states are included in the analysis.

It will become apparent that the mathematical model employed to study the
phenomena described above has been simplified to a considerable extent. Many of
the details known about the microcirculation have been omitted so that solutions
of the governing equations may be obtained. In spite of the simplifications, 1t
is expected that the results obtained will provide a tool for evaluating experil-
mental evidence, will classify a number of important regimes, will provide con-
venlent scaling laws, and, hopefully, will permit meaningful quantitative
prediction of the phenomena in question.

SYMBOILS™
cs mass fraction of species i (eq. (4))
Dy binary diffusion coefficient of species i (dimensional quantity)
T dimensional mass flux per unit length of capillary leaving the semi-
permeable wall
F defined by equation (31)
g(y) initial or starting profile of species concentration (eq. (18))
hs wall permeability for species 1
Hi defined by equation (13)
Tp modified Bessel function of first kind of order op
Jp ordinary Bessel function of first kind of order p
L capillary length (dimensional quantity)
Mi molecular weight of species 1

1A11 quantities are dimensionless unless noted otherwise.
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a constant or constant of proportionality in the production rate
mass averaged velocity vector (eq. (2))(dimensional quantity)

diffusive velocity vector relative to mass averaged velocity (eq. (1))
(dimensional quantity)

radial distance in capillary
radius of semipermeable wall (dimensional quantity)

represents t or x for H3i® 2> 0[1] unsteady state or H;Z = 0[e]
steady state, respectively

time variable

component of mass averaged velocity parallel to capillary axis
component of mass averaged velocity in radial direction
distance along capillary axis

defined by equation (16)

particular solution of nonhomogenecus differential equation with
nonhomogeneous boundary conditions (eq. (31), e.g.)

zero for constant Tlux of species 1 across semipermeable wall;
otherwise it i1s -Hihji

Hihi(cic - ¢;_) for constant flux of species i across semipermeable
wall; otherwise it is 'Hihicis

a quantity much less than unity

eigenvalues obtained from positive roots of equation (30)
mass density of solution

mass density of species i

local rate of production of species 1 per unit volume

dimensional quantities
Subscripts

conditions on the cell side (just inside) of the semipermeable wall

species 1, J, k



n nth eigenvalue

o reference conditions (conditions on axis of capillary entrance)
8 conditions on surroundings side (just outside) of the semipermeable wall
ANATYSIS

Coordinates and Kinematics

The flow model used in the analysis is shown in the sketch. The cells
contain a primary fluid and quantities of various chemical species 1, which are
transported by the motion of

/ //////////7// the cell and by diffusion.
Capillary axis b //// Thus each chemical species
/7 emipermeable wal /42 moves with an absolute velocity
f AYAAAAA{

- V3 composed of the local mass
r
22;?/

X averaged velocity 3 plus its
7 diffusion velocity q rela-
tive to the mass averaged

velocity; that is

Surroundings

// 0

Vi =4+ 44 (1)

The mass averaged velocity has components U and v parallel and normal to
the capillary axis, respectively, and is defined by

oy V
q = Z 11 chvl (2)
2.5:
where

5=27 (3)

and the mass fraction of species 1 1is
ey = Pi/P (1)

It follows simply that

throughout the flow field.



The mass flux of species 1 by diffusion relative to the mass motion is the
product of species density and diffusion velocity and, according to Fick's law,
is '

5;d; = -PDy grad Ty (6)

For the model of blood cells being pushed along, one behind the other
through the capillary, one cannot expect to write the usual Navier-Stokes momen-
tum equation and then look for the Poiseuille pipe flow velocity profiles.
Instead, it is simply noted that the friction forces between the cell wall and
the surroundings must be balanced with a pressure gradient in order to maintain
the flow through the capillary. For present purposes, we are not concerned with
any more detail of momentum balancing but consider mass transport of the species
i.

Differential Equation of Mass Transport

The mass transport in the capillary is accomplished both by movement of the
cells with their chemical diluents and by diffusion of the diluents relative to
the cell motion.

In a fixed mass element of fluid moving with mass averaged velocity, we
equate the rate at which the concentration of species i varies (left side) to
the net rate at which it diffuses into the element and is produced therein (right
side) leading to

-Eiﬁi—.a_ai_> 1 ——.§§_i_> —
P CEPLSE/ tEF PR M (7)

The left side of equation (7) contains the Eulerian derivative D/Dt which
is discussed on page 15 of reference 9. The mass flux of species 1 by diffu-
sion represented by equation (6) is readily identified in the first two terms of
the right side of equation (7), while the last term is the local rate of produc-
tion of species 1 per unit volume.

It is important to note that as long as we are concerned with dilute
quantities of species i diffusing in some primary fluid, the binary diffusion
coefficient D3 may be used. Furthermore, for a mixture of several species
which are not necessarily dilute we may use the binary diffusion coefficient if it
is possible to combine the various specles into two principal groups, each con-
talning species of like molecular weight and like mutual collision cross section
(ref. 10). Otherwise, it i1s necessary to use the multicomponent diffusion coef-
ficients, which are most unpleasant. The boundary conditions for equation (7)2
are

2Boundary conditions in the x direction imposed by the boundaries of the
end walls of the cells have not been written. It will be shown subsequently that
for the model employed, these boundaries are not important.




at T =0, 3 = 51 (%,T,0) (8)

at X =0, ¢; = ¢41(0,7,%) (9)

st T =0, 3%1 /3F = 0 (m)‘
oc; —

at T =R, -Ds E;§-= hi(Eic - Eis) (11)

It is convenient to define the dimensionless quantities

x = I/R , r=7/R, P = 5/56 )
cy = Ei/Eio s u = ﬁ/ﬁb s v = ¥/l $ (12)
t = E%i , hi = BiR/Dg wi = BiR/e1 UoP, |
J
Define also the dimensionless parameter ' i
Hi® = D1 /Rl (13)

Substituting these dimensionless quantities into equation (7) and expressing the
Eulerian derivative leads to:

aci 5ci aci <§2Ci 1 561 ) 1 aci d2c4
-} = —=* = H:2 ==L ==
ot T ox v or * d3x2 b dx 0x Y OJr ¥ dr
;?_c_ia_o> Wi
Todr oo/ (1)

The size of the individual terms in equation (14) is estimated as follows (where
€ << 1, L is capillary length, and R/L = O[el).

dcy
...._l+l__1_'._.
St el

§> £ (15)

1 1 1 1 € 11 1,11
2 = g —m == S L D42 ==
+ €% T = Hy < + T +TTFTYTT

|
On the left side of equation (15) €2 may be neglected in favor of €, and in the \

parentheses, all terms € and smaller may be neglected in comparison with unity.
If u is set to unity (in accord with the model employed), r is replaced by

y = r/Hi (16)




and the negligible terms are omitted, equation (14) becomes
dci dei dZcy dey Wi
=+ — = ; PR e (17)
3t  ox oy YV 3y e
l Examination of equation (15) reveals two regimes of interest which depend on the
size of Hi2. The first of these corresponds to Hi® = O[e], for which equa-
- tion (17) is appropriate as it stands. ' The second of these corresponds to
Hi® 2 0[1] for which the second term on the left of equation (17) may be omitted.
The boundary conditions for equation (17) are:

for Hi® << 1, steady state, or Hi2 > 0[1],

ci(0,y) = &(y) (18)
y . dcy
\ éfl.(x,o) =0 or —Si (t,O) =0 (19)
oy oy
ocy 1 dey
—a—:;i—-' <X, H—;) = -Hihi(Cic - Cis) or S;j; <t) I':]l.:—l> = 'thi(clc - cis) <2O)

It is convenient to let s represent x for Hi® << 1 steady state or t for
Hi® > 0[1] and write boundary condition (20) in the form:

ac- 1 1
| 5y (o) - eaes (o) - (21)

where o and B; are considered to be constant. Equation (21) is related to
the mass flux of species i across the semipermeable wall.® If the flux is a
function of s, then by comparison of equations (21) and (20), and equations (12)

i B. o _H.h.c. - - ______Hi __Cis
:L'i‘oHi’ 1 11 1lg —U'OHi Eio

ai = -Hihj = - (22)

SThe mess flux per unit length of capillary leaving the semipermeable wall is

£ = —onR i R 5 &
= -2rRpD; — = -2x ﬁbﬁi Po —
oOF ° " dy

or in terms of wall permeability is

f= QﬂRﬁiE(Eic - Eis) = -QﬂRﬁbﬁbEiop(@icic - B1)




On the other hand, if the flux of species 1 across the semipermeable membrane
is constant, we must set o to zero and let Bj stand for

Bi = Hihi(ci, - cig) (23)

Both of these possibilities are included in boundary condition (21).

It is noted on the right side of equation (17) that diffusion in the axial
direction has been neglected in favor of diffusion in the radial direction
because the concentration gradients in the former are smaller. Thus even though
there are cell walls inhibiting diffusion in the x direction, we can neglect
that detail simply because diffusion with or without cell walls is not important
in the x direction. The point made earlier accounting for the cell wall by
including its permeability with that of the capilillary wall (which thus associates
the importance of cell wall with radial diffusion) is a better approximation than
may have been anticipated.

Without having solved the equations, we already have a useful criterion,
Hi2, which delineates two important regimes. These will be called the bulk flow
and diffusion controlling regimes corresponding to H;{Z << 1 and Hj® > 0[1],
respectively. The significance of the criterion Hi2 << 1 for differential equa-
tion (17) is that mass transport of species i by convection (or bulk flow) in
the axial direction is comparable to mass transport by diffusion in the radial
direction.

The parameter H;i may have a fairly broad range of values, For biological
systems, Dy ® 10~7 cm2/sec for several metabolites, according to reference 7
(p. 13). That reference cites the case of the diffusion of oxygen in Arbacia
eggs (p. 80)., The diffusion coefficient for glycerine, MgSO4, KC1, NaCl, sugar,
and urea in water is about two orders of magnitude larger than that (i.e.,
107° cm2/sec) according to reference 11 (p. 210), For human capillaries,
R ~ 0,4x107% cm, while Ty = 0.04 cm/sec according to reference 12 (p. 45). Both
values are almost the same as those listed for dogs (ref. 13, p. 43)(for these
conditions, the time required for a cell to travel the length of the capillary is
about one second), Thus H; wvaries from about the order of 1072 to unity
corresponding to these values,

Under some circumstances, the diffusion coefficient in gases and liquids is
proportional to the reciprocal of the square root of the molecular weight of the
diffusing substance (ref. 1L, p. 171). Noting that the square root of the molec-
ular weight of thiocyanate is the same order of magnitude as that for oxygen or
other metabolites, we might expect Hi2 for thiocyanate to be of the order of 1072
For this reason, if thiocyanate i1s introduced into the red cells, it may be
expected that its transport by axial bulk flow is significant. The experimental
results (in dogs) of reference 15 indicate that indeed this is the case (although
the mechanism for the escape of thiocyanate from the capillary was thought to be
"filtration in bulk" through the capillary wall which was considered to be more
rapid than diffusion); roughly one fourth of the cardiac output of ultrafiltrable
material entering the capillary traversed the length of the capillary without
escaping to the surroundings.



On the other hand, the significance of the criterion Hi2 > 0[1] is that
mass transport by radial diffusion is more important than that by the capillary
flow. This may be the case if Di is large (corresponding to species having low
molecular weights) or if RUy is small (corresponding to capillaries in which
the flow is almost cut off, i.e., only a trickle of blood flows through).

The formulation of the differential equation (17) and its boundary conditions
(18), (19), and (21) is complete and we turn attention to solutions of the
equations,

RESUITS AND DISCUSSION

If Gi/ﬁ; the local rate of production or consumption of species 1 per
unit mass, is either constant (such as zero for no reactions) or proportional to
Ty (which is likely for consumption), the differential equation (17) is linear
and one may expect to find solutions in a direct way, Generally, however, Ei/ﬁ
is not necessarily constant or proportional to ¢, but may be proportional to
the mass fraction of some other species €: (if T; 1is formed by the dissociation
of Ej for example) as well as to the mass fraction of some enzyme ¢Ck. In gen-
eral, an equation of the type (17) can be written for each species present, and
the resulting set of equations may be both nonlinear and coupled, Moreover,
boundary conditions on these equations may not be well behaved, especially for
studies in which the capillary wall has been damaged,

Our first interest is to examine the linear case for which solutions are
readily obtained, They will be presented in order of increasing generality,
Subsequently, a means for studying the nonlinear case will be discussed,

Closed-Form Solutions

These results are presented in order of increasing generality.

Steady-state, diffusion-controlling, constant production or consumption
rate (Hi2 > O0[1], wi/p = +p2).- The left side of equation (17) is set to zero and
its solution is the parabola

2 =] Bs
__(p 2 D 1 1 1
e1(y) = +<é> Y F g <éHi @i> N ()

Illustrative examples of this result are presented in figures 1 (for
production) and 2 (for consumption). The parameters p2, Hi, Bi, and oy shown
were selected arbitrarily. The slopes of ¢35 at the semipermeable wall indicate
that species 1 1is leaving the capillary during constant production and entering
during constant consumption.




Two special cases corresponding to of =0 (constant mass flux at the
semipermeable wall) and p© = 0 (no reactions) might be mentioned. For aji = O
the solution of equation (17) becomes

ci(y) = +-%§ (ﬁ%z - Yé) (25)

Tt is noted that only the production of species i (+p2) is allowed because ey
cannot be negative and that species 1 vanishes at the wall (Cic is zero).
Furthermore, it is easy to show that Bi_=-+1@/2Hi, which means that species 1
is leaving the capillary (eq. (23)). But if ci, is zero, species 1 cannot
leave the capillary, so we must require that p2 be zero, and the case is
trivial.

The second special case corresponds to no reactions (p2 = 0), but with
ai # 0. The result is that ci = Bj/ai, a constant, and that mass transport
across the semipermeable wall is zero. Thus it is seen that equation (24) is
meaningful only if there are chemical reactions.

Steady-state, diffusion-controlling, production or consumption rate
proportional to concentration (Hi® > Ol1l], wi/p = #p2ci).- Again the left side of
equation (17) is omitted and its solution for production is

By
Bi

Illustrative examples for production and consumption are shown in figures 3 and k4
for the same values of the parameters used in figures 1 and 2. The mass fraction
gradients at (and the mass flux across) the wall are smaller in figures 3 and 4
than those in figures 1 and 2, respectively.

Jo(py) (26)

ci(y)

while that for consumption is

Io(py) (27)

Ci(Y) =

As before, equations (26) and (27) are trivial for no production (p® = 0)
and cy = Bi/ai = constant. For constant mass flux across the wall, equation (27)
must be abandoned (cy is negative), but equation (26) is well behaved. So far,
examples are very readlily evaluated because c¢i has been a function of only one
independent variable. Results for two independent variables (s,y) are considered
next.

Production and consumption rate constant (wi/P = +p®) for either unsteady-
state diffusion controlling (Hi2 > O[1]) or steady-state bulk flow (Hi2 << 1).-
Here we let s represent © for the former and x for the latter, while the
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second term on the left of equation (17) is neglected for the former, but the
first term is neglected for the latter. The solution of equation (17) is
obtained by separation of variables for the homogeneous part of the equation
(ref. 16, p. 168) to which the appropriate particular solution is added and is:

28]
B4 1 2 A2
cale,y) = of * p° % (—2—;: - @ - 12—] +>: AnJo(Ngy)e ™ (28)
=1
where
1/Hy
f ¥Io (A ) F(y)dy (29)
o]

R QH% 2l

An are the positive roots (presented in the appendix) of the transcendental

equation
<, > (30)

J 1 <H1>

F(y) = g(y) - 2(y) (31)

and

where Z(y) is the particular solution mentioned previously (which includes the
terms before the summation sign on the right side of equation (28) and is seen to
be the same as the right side of equation (24))

Equation (28) can be evaluated for a given set of parameters Hi®, ai, Bi,
p2, and g(y). Although the equation is in terms of well-known functions and the
procedure is straightforward, its evaluation is tedious and time consuming. Thus
it is likely that the equation should be evaluated by a high-speed digital com-
puter for each specific example (which is beyond the scope of the present analy-
sis). TFor present purposes it is instructive to examine two simplifications of
equation (28); the first corresponds to constant mass flux across the semiperme-
able wall (af = 0) for which equation (28) becomes

ci(s:y) = % T - > z AnJo(7\ny -7\n ® (32)
=1
where 1/H1
Ap = 2H12f ¥Io(Ay)F(y) dy (33)
o
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and An/Hi are the zeros of J; tabulated in reference 17 (p. 166) and are

Mo Az _ As 4
ﬁi = 3.8317 , = 7.0156 , i 10.1735 , . . . (3k)

The second simplification is for no chemical reactions (p® = 0, but ay # 0).
If we assume that the concentration of species 1 is uniform in the cell as it
enters the capillary, then g(y) = 1 and A, can be integrated readily. The
resulting mass fraction equation is much simpler than equation (28) and is

1 To(My) e-%n?s

T B o0/ (35)

[oe]
B .
ci(s,y) = 5? + 2Hy(B1 - of) E: o2

=1

where, as before, A, are the positive roots of equation (30).

Equation (35) holds specisl significance in that it corresponds to the
transport of species 1 under most ordinary circumstances, and it is appropriate
that some illustrative examples obtained from it be presented. The first of
these corresponds to steady-state bulk flow. Some values of the parameters ay
and Hi{ <for this condition have been estimated for various species by use of data
obtained from reference 18, and are listed in table I. It is pointed out that
the following assumptions were made to obtain the values shown in the last two
columns T, = 0.04 cm/sec, R = 0.4x107% cm, and Dy M1 = 107% emPg/2/sec(g mole)™/Z,
It is emphasized that there is considerable uncertainty associated with these num-
bers and they are only intended for illustrative purposes, It is noted that Hj
only varies by an order of magnitude (107 to 1072) for species whose molecular
weight varies by three orders of magnitude (from 18 for water to 69,000 for serum
albumen), and that most of the species of interest can be represented by Iﬁj310‘%
Similarly, oi is of the order of -10-1 to -10"2 for most of these species, while
-107Y represents a "typical value for illustrative purposes, Equation (22)
reveals that B; can vary from zero (no species i in surroundings) to - (no
species 1 at entrance to capillary), For illustrative purposes we set By =0
while Hi = -o4 = 1071, This corresponds to cells laden with species 1 enter-
ing a capillary and giving up that species to surroundings that are relatively
free of that substance,

The development of the mass fraction profile across the cell as it moves
along the capillary (x = 0, 1, 10 and 100) is shown in figure 5. It can be seen
that the cell gives up 75 percent of its mass of species 1 1o the surroundings
by the time it has passed through a capillary that is 100 radii long (which is a
good reason for capillaries to be about that long). Coincidently, this is essen-
tially the result cited previously for thiocyanate injection into dogs (ref. 15)
which indicates that the estimate of Hj® = 1072 is plausible for thiocyanate,
and that at least this result of that paper could be explained by the diffusion
mechanism, The rate at which species i leaves the capillary radially varies
with position for this example and is shown in figure 6,
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The second of these examples corresponds to the unsteady state with
diffusion controlling, which is illustrated in figure 7 for Hi® =1, afi = -0.1,
Bs = p? = 0. For this example, cells laden with species i were moving through
the capillary whose surroundings are free of that substance. Abruptly, the flow
was retarded or the permeability of the wall to this species was increased. The
resulting mass fraction profile of species 1 across the cell is shown at times
t =0, 1, 10, and 100. For this particular example, the mass fractions are not
strong functions of radius, but are strong functions of time. The lack of radial
dependence indicates that the adjustment of concentration within the cell is rapid
and that the wall permeability is the limiting factor on species transport. This
will be apparent subsequently in another unsteady-state diffusion controlling
example (fig. 11) as well. Species i essentially vanishes between t = 10 and
t = 100. TFor reference purposes, t = 10 corresponds to 0.1 second if
R = 0.4x107° cm and Uy = 0. hx10~* cm/sec, or to 1 second if the flow velocity has
been diminished to 0.4x1072 cm/sec Thus in these small vessels, mass transport
by diffusion may be accomplished quite rapidly. The rate at which species i
leaves the capillary radially is shown as a function of time in figure 8.

Another interesting example without reactions is that of cells moving
through a capillary whose surroundings have a high concentration of species i
relative to that of the entering cell. In figure 9, we see the concentration of
species 1 increase by a factor of about 8 in a cell as it moves 50 diameters
down a capillary whose surroundings have a concentration ten times that of the
entering cell. The corresponding mass flux of species 1 entering the capillary
is shown as a function of position in figure 10.

As a final illustration, the development of the concentration profile of
species 1 in the cell in whose surroundings species 1 abruptly appears in
high concentration (by injection for example) is shown in figure 11. The cell
concentration rapidly approaches that of the surroundings. Indeed, by the time
t = 10 (or 0.1 to 1.0 second for the conditions cited above for fig. 7), the cell
concentration is about 90 percent that of the surroundings. The mass flux enter-
ing the cell as a function of time is shown in figure 12.

Production or consumption rate proportional to concentration (wl/p = +p cl)
for either unsteady diffusion controlling (HiZ? > O[l], or steady-state bulk flow
(Hi2 < 1).- The solution of equation (17) for production includes the right side

of equation (26) as the particular solution Z(y) and is

o

B;J (py) N
Ci(s,y) - 170 +Z AnJo(?\ny)e(pz ?\1’1 )S (36)
@) ()
where /
1/H4

f yF(y)To(Nuy) dy (37)

2H{Z
n - N >
2 (M « ©
JO <Hl> <l i }\n2>
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The function P(y) is expressed by equation (31) and A, are the positive roots
of equation (30)

In similar fashion, the soclution of equation (17) for consumption includes
the right side of equation (27) as Z(y) and is

ci(s,y) o) +Z anTo ()™ (PR (38)

@) () &

and equations (30), (31), and (37) apply. As was the case in the previous
section, some 51mp11f1catlon of both equations (36) and (38) is effected if
either «f in equation (30) or p® in equations (36) and (38) is set to zero.
The first of these (a = 0) leads to eigenvalues corresponding to the zeros of
J1, as before. Slmllarly, if p® 1is zero, both equations (36) and (38) reduce
to equation (35) which has already been discussed.

The two-dimensional (s and y) results of the last two sections may be
applied to many problems. Two prominent unsteady-state problems which suggest
themselves are: (1) effect of a sudden appearance locally of a particular chem-
ical species (by 1n3ectlon for example), and (2) species transport following the
abrupt termination of flow® (caused, perhaps, by a leukocyte clogging a
capillary).

Obviously, the steady-state results may be applied to any number of
examples. Not quite so obvious, perhaps, is that to some extent, they may be
applied directly to the case of a wall of discontinuous permeability (resulting
from damage for example). That is, they can be applied to the damaged length
using the results from the undamaged length to obtain g(y) at the beginning of
the damaged length.

Closed-form solutions for the three-dimensional case (x,y,t)(or unsteady
state) could be obtained to complete the catalog of results of coupled linear
differential equations.

4Tn spite of the fact that Hie = o Wwhen uo O the present results _can
be used if we redefine some of the quantities. In partlcular, we replace U, by
Di/R wherever it appears in the formulation. The consequence is that Hi® can
be replaced by unity everywhere it appears and the following quantities have
these new definitions:

t = E Di = W -——i d '-th fod — h - H_ R
= R_é’ wi = 1 OcloDl K} an el er o = =- i = -hj D_i-’
By = -hjei, or aj =0, By =hiles, -eg)

1k



Solution of the General Case

It was mentioned previously that, in general, the term wi/O accounting for
the local rate of production of the species 1 per unit mass, will be neither
constant nor proportional to c¢i; but may be complicated function of ci and the
concentration of other species. Furthermore, the boundary conditions may not be
well behaved. Thus it is likely that numerical integration of the partial
differential equations will be necessary.

Examination of equation (17) suggests a numerical method for solving a set of
equations (17) corresponding to a set of reacting chemical species for either two-
dimensional case (y and t or y and x). The equation is a parabolic differen-
tial equation. If profiles of ci(y,s) are known at some value of s (from the
results of an exact solution for example), it is possible to calculate the profile
of ci at s + As by use of the differential equation itself if the derivatives
appearing in the equation are replaced by finite differences corresponding to a
rectangular finite difference mesh in y and s. In this way, profiles of ci(y,s)
can be constructed at successive values of s to obtain the complete solution of
a problem. The boundary conditions do not have to be particularly well behaved
in order for a finite difference scheme to be successful (refs. 19 through 23).
They can be varied in an almost arbitrary way and can include discontinuities
(corresponding, e.g., to capillary wall injury or to the sudden appearance of a
toxic substance). For the general case, involving a number of reacting species,
it is expected that this approach would be very fruitful,

Experimental Considerations

The results of the analysis are contained in the closed-form solutions
written in terms of the parameters H;Z, ai, Bi, g(y), and p® and give the mass
fraction of species 1 as a function of time and position. The parameters con-
stitute a set of scaling laws for the reacting flow system. Thus an experiment
with a large-scale model represents the behavior of the small-scale prototype
(capillary), as long as these parameters are the same in both systems. It is fur-
ther noted that the experimental model could consist of one long cylindrical
"ecell" with semipermeable walls and filled with a test fluid being drawn through a
concentric tube. The point is that it is not necessary to have numerous individ-
ual cells moving in line through the tube because the end walls of individual
cells are not important to the transport phencmens. The "surroundings" mentioned
in the introduction can be either an annulus of fluid or the concentric fixed
semipermeable capillary wall. Furthermore, a number of these tubes may be placed
in a bath of suitable "tissue fluid" to represent a capillary bed. Measurements
might be made in individual tubes or in the entrance and exit of the complete
capillary bed. Thus, the analysis indicates that meaningful experiments can be
made with relatively simple macroscopic models using reacting mixtures and
semipermeable tubes.
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CONCLUSIONS

The differential equation of mass transport of chemically reacting species
by diffusion in cells that are moving through capillaries has been simplified by
an order of magnitude analysis. Two principal regimes of iInterest have been
defined by the ratio of the binary diffusion coefficient of & given chemical sub-
stance to the product of capillary radius and cell velocity. Species transport
by the bulk motion of cells along the capillary axis can be neglected in favor -of
radial diffusion only if that ratio is of the order unity or greater.

A family of closed-form solubtions of the differential equations has been
obtained and includes steady and unsteady states, and consumption or production
of species (with particular reference to the introduction of foreign substances)
at a local rate that is either constant or proportional to the local concentration.

Application of these results to microcirculation problems has been
discussed and a few illustrative examples were presented showing the development
of the concentration profiles across the cell either as a function of time or
position as the cell moves through the capillary. Examples of the rate of trans-
port of chemical species in and out of the capillary were presented.

A method of solving more general examples which are described in terms of a
set of coupled nonlinear partial differential equations has been discussed.

The analysis suggests scaling parameters useful for modeling experiments of

reacting flows passing through vessels with semipermeable walls.

Ames Research Center
National Aerconautics and Space Administration
Moffett Field, Calif., Aug. 9, 1963
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APPENDIX

ETGENVALUES

The positive roots of the transcendental equation (30) provide the
eigenvalues An for several of the cases considered. Because that equation
appears in problems other than the present application, its roots are of general
interest and will be presented for two values of the parameter ai/Hi.

Because the zeros of J, and J; interlace and, for large arguments, are
spaced at intervals of approximately w, the roots of equaticn (30) may be
expected to have that spacing for large values of %n/Hi. For small arguments,
the first two roots may be estimated by use of the series representations for
Jo and Jy. If terms through the fourth and third degrees in A\,/H; for J, and
Jd,, respectively, are substituted in equation (30), the two positive roots are
readily found to be

1/ 2
N Y A (A1)
Hi Hi
1 -4 —=
o
and
A
=2 =22 (a2)
Hy

For examples of present interest, oy 1is a negative number (eq. (22)) and the
first root (Al) is real and smaller than the second root (A2). It was noted in
the text that for a4i = 0, the roots of equation (30) are the zeros of Ji, the
first of which is zero (which is in accord with (Al)) and the second is 3.8317
(which does not agree with eq. (A2)). For a4 different from zero, equation (Al)
predicts the first root fairly accurately, but equation (A2) generally does not
predict the second root accurately.

Exact roots of equation (30) have been obtained by Messrs. Paul Byrd and
L. Klosinski of Ames Research Center by use of the IBM 7090 digital computer.
The first 200 roots N\n/Hi for aj/Hi = -0.1 and -1.0 are listed in tables II
and IIT, respectively.
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Species

TABLE I.- PARAMETER ESTIMATES

i

Water
NaC1

Urea
Glucose
Sucrose
Raffinose
Insulin
Myoglobin

Hemoglobin

Serum albumen

(g/gM%ole)
(ref. 18)
18
58.5
60
180
342
59k
5,100
17,000
68,000

69,000

hy
(cm/sec)
(ref. 18)
0.54x1073
.33x1073
.26x1072
.OX10™4
.5x107%
.39x10 "%
.50X107°
.Lox107®

Hy

1.2x107L
.90x10 "1
.90x10 7t
.68x107t
.58x10 "%
.51x107t
.30x107t
.22x10 "%
.15x107
.15x1071

_(I,i

1l.1x107%
.01x10™L
.72x10 7%
.33x107%
.22x107t
.19x107t
JLoxio0-E
LL6x10™3




WoonmEwpE B

NOTE:

TABLE II.- THE ROOTS Mn/Hi FOR o/Hi = -0.1

7\n/Hi

0.44168178
.38577098+1
.70298252+1
.10183293+2
.13331195+2
. 1647 6700+2
.19620955+2
. 227 64h7T+2
.25907532+2
. 29050270+2
.32192786+2
.35335137+2
.38L77365+=2
.L1619kg7+2
J4l761553+2
- U7903548+2
.51045L0h+2
.54187398+2
. 57329269+2
LE0471111+2
.63612928+2
.66754h723+2
.69896501+2
.73038264+2
.76180013+2
.79321747+2
.82L63h71+2
.85605187+2
.88746893+2
.91888592+2
.95030284+2
.98171968+2
.10131364+3
.10445532+3
.10759699+3
.11073866+3
.11388031+3
.11702197+3
.12016363+3
.12330528+3
.12644693+3
.12958857+3
.13273022+3
.13587186+3
.13901349+3
.14215513+3
. 1452967 6+3
.14843839+3
.15158003+3
.15472165+3
A group of digits followed by +m indicates that

99
100

7\n/H:i.

0.15786328+3
.16100491+3
.16414650+3
.16728816+3
.17042978+3
.17357141+3
.17671303+3
.17985L65+3
.18299627+3
.18613788+3
.18927950+3
.19242112+3
.1955627 4+3
.19870435+3
. 20184596+3
.20498758+3
.20812919+3
.21127080+3
.21441241+3
.21755403+3
. 22069504 +3
.22383724+3
. 22697885+3
.23012047+3
. £3326207+3
. 23640368+3
. 23954529+3
. 24268690+3
. 24582850+3
.2L897011+3
.25211172+3
.25525332+3
.25839493+3
.26153653+3
.26L67814+3
.26781974+3
.27096134+3
.27410295+3
.27724455+3
.28038616+3
.28352776+3
.28666937+3
.28981097+3
. 29295257+3
. 29609417+3
.29923578+3
-30237738+3
.30551898+3
.30866058+3
.31180219+3

n

101
102
103
104
105
106
107
108
109
110
111
112
113
11k
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
1h1
142
143
1hlh
145
146
147
148
149
150

M/Hi

n

P I

0.31494378+3
.31808539+3
.32122698+3
.32436859+3
.32751019+3
.33065179+3
-33379339+3
.33693499+3
. 3L007660+3
.34321819+3
.34635979+3
.34950139+3
.35264299+3
.35578459+3
.35802618+3
.36206779+3
.36520939+3
.36835099+3
. 37149259+3
.37463L18+3
3TTT7579+3
.38091739+3
.38405898+3
.38720058+3
.39034218+3
-39348377+3
.39662538+3
.39976697+53
.40290857+3
.40605018+3
L40919177+3
.41233337+3
U1547496+3
.11861656+3
.42175816+3
4248997643
L2804135+3
.43118295+3
. 43432455+3
4374661043
. LUO60TT bt
443749340+
 4h68909M+3
.45003253+3
45317413+3
.45631573+3
4594573243
.16259892+3
.46574052+3
. 16888211+a3

should be m places to the right of the first digit.

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
7L
175
176
N
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200

the decimal point

Mn/Hi

0.47202371+3
47516531+3
.47830690+3
L 48144850+3
.48459010+3
.48773169+3
.Lo087329+3
.4oL01488+a
.Lg7156U8+8
. 50029808+3
. 50343967+3
.50658127+3
.50972287+3
. 51286446+3
.51600605+3
.51914766+3
.52228925+3
.52543084+3
.528572Lk+3
. 5317140 k4+3
.53485563+3
-53799723+3
.5L113881+3
. 5442804243
.5h742201+8
.55056360+3
.55370520+3
.55684680+3
.55998839+3
.56312999+3
.56627158+3
.56941319+3
. 57255477+3
.57569637+3
.57883797+3
.58197956+3
.5851211.5+3
. 5882627 5+3
.59140434+3
. 59L54595+3
.59768753+3
.60082913+3
.60397072+3
.60711232+3
.61025392+3
.61339550+3
.61653710+3
.61967870+3
.62282030+3
.62596190+3

21



TABLE III.- THE ROOTS An/Hi FOR a4/Hi = -1.0

22

n An/H1 no| An/Hi n Mn/Hi n Mn/Hi
1 [0.12557837-1 |51 [0.15786898+3 | 101 | 0.31494664+3 | 151 0.47202561+3
2 JLo79k776-1 | 52 .16101050+3 | 102 .31808822+3 | 152| .47516719+s
3 S71557990+1 | 53 .16L415202+3 | 103 | .32122979+3 | 153 .L7830878+3
4 .10270984+2 | 54 \16729354+3 | 104 | .32437136+3 | 154| .L8145036+3
5 .13398397+2 | 55 \17043506+3 | 105 | .32751293+3 | 155| .48459195+3
6 .16531158+2 | 56 L17357659+2 | 106 | .33065L51+3 | 156 .L4877335hk+s
7 .19666727+2 | 57 \17671812+3 | 107 | .33379608+3 | 157 .L9087512+3
8 .22803950+2 | 58 .17985965+3 | 108 | .33693766+3 | 158 .L9L01670+3
9 .259L42228+2 | 59 .18300118+3 | 109 | .3400792L+3| 159 .L9715829+3
10 | .29081221+2 | 60 .18614271+3 | 110 | .34322082+3| 160| .50029986+3
11 | .32220720+2 | 61 .18928k25+3 | 111 | .34636239+3 | 161 .503Lh1L45+a
12 | .35360590+2 | 62 .19242579+3 | 112| .3L950396+3 | 162| .50658304+3
13 | .385007h2+2 | 63 .19556733+3 | 113 ] .3526L55L4+3 | 163] .50972462+3
1 | LL16h1110+2 | 64 .10870888+3 | 11k] .3557871l+3| 164| .51286621+3
15 | .LL781650+2 | 65 .20185041+3 | 115} .358928609+3| 165( .51600780+3
16 | .k7922328+2 | 66 .20499197+3 | 116 .36207027+3 | 166 .51914938+3
17 1 .51063119+2 | 67 .20813351+3 | 1171 .36521185+3 | 167 | .52220096+3
18 | .5420L002+2 | 68 .21127506+3 | 118 | .36835343+3| 168| .52543256+3
19 | .573LL96h+2 | 69 21k41661+s | 119 .37149501+3 | 169| .52857413+3
20 | .60485990+2 |70 .21755816+3 | 120 | .37L463658+3 | 170| .53171572+3
21 | .63627072+2 |71 .22069971+3 | 121| .37777817+3 | 171| .53485731+3
22 | 667682042 |72 2238412643 | 122 .38091975+3 | 172| -5379988%+s
23 [ .6990937k+2 |73 .22698282+3 | 123 | .38406132+3| 173) .5L11L0OL4B+s
2L | ,7305058L+2 | 7k .23012437+3 | 124 | .38720290+3 | 174| .5LL28206+s
25 | .76191823+2 |75 .23326593+3 | 125| .3003444B+3| 175( .SLTL2365+3
26 | .79333092+2 | 76 .23640748+3 | 126 | .39348606+3 | 176| .55056524+3
27 | 8247438442 | 77 -2395L00+3 | 127 | .39662764+3 | 177| .55370682+3
28 | .85615698+2 |78 .24269060+3 | 128 | .39976922+3| 178| .5568L841+s
29 | .88757031+2 |79 .24583216+3 | 129 .40291080+3| 179| .55999000+3
30 | .91898385+=2 | 80 .24897373+3 | 130 | .L0605239+3| 180| .56313158+3
31| .95039752+=2 | 81 .25211528+3 | 131| .40919396+3| 181| .56627316+3
327 .9818113k+2 | 82 .25525685+3 | 132 | .41233555+3| 182| .56941476+3
33| .10132252+3 | 83 .258398L1+3 | 133 | . h15h7713+3 | 183 .57255635+3
3k} .104L46393+3 | 8L | .26153997+3 | 13k | .41861871+3| 18L| .57569793+s
351 .10760535+3 | 85 .26L468150+3 | 135 | .L42176028+3| 185| .57883951+3
36 | .1107L4678+3 | 86 .26782310+3 | 136 .k2h90187+3]| 186] .58198110+s
37 | .11388822+3 | 87 .27096L67+3 | 137 | .L280U3L5+3| 187 | .58512269+3
38 ] .11702966+3 | 88 2741062343 | 138 .43118503+3| 188| .58826428+3
39 | .12017111+3 | 89 2772477943 | 139 . 43L32662+3| 189 .59140586+3
Lo | .12331258+3 | 90 .28038937+3 | 140 | .43746819+3| 190| .59L54TLE+s
L1 | .126L5404+s | 91 .28353093+3 | 141 | .L40O60978+3| 191| .59768%0L+a
L2 | .12959551+3 | 92 .28667250+3 | 142 | .44375136+3| 192 .60083062+s
43 | .13273700+3 | 93 .28981L07+3 | 143 | .L4689295+3| 193 .60397221+3
bh | .13587847+3 | oL -29205564+3 | 14L{ .45003453+3| 19L| .60711379+s
45 | .13901997+3 | 95 .29609721+3 | 145| 4531761143 | 195| .61025538+s
L6 | .1k216146+3 | 96 2992387943 | 146| .45631769+3( 196 .61339697+3
Y7 | .14530296+3 | 97 .30238035+3 | 147 | .45945928+3] 197 .61653856+3
W8 | .1u8hihibrs | 98 .30552193+3 | 148] .46260086+3| 198| .61968015+a
49 | .15158597+3 | 99 .308663k9+3 | 19| .u65TU2LL+3| 199| .62282173+s
50 | .15k727h7+3 | 100 | .31180507+3 | 150 .46888L03+a| 200 .62596333+3
NOTE: A group of digits followed by +m indicates that the decimal point

should be m places to the right of the first digit.
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Figure 8.- Dimensionless mass flux per unit length of capillary leaving the
semipermeable wall for unsteady state, diffusion controlling with no
reactions (H; = 1.0, a3 = -0.1, By = p~ = 0).



T€

r

0 - -

. \ |
Ol 0 2 0 4 0 10

¢i(0,r) ¢; (h,r) c; (10,r) c; (100, r)

!
Figure 9, - Development of mass fraction profile for steady-state bulk flow with no reactions

(H; = —««; = 0.1, B; = -1.0, p® = 0),



A3

Dimensionless radial mass flux
+f/21rRuo%CioPai=Bi/ai‘ Cic

- 1 1 1

]
o 20 40 60 80 100

Dimensionless distance along capillary X/R

Figure 10.- Dimensionless mass flux per unit length of capillary entering the
semipermeable wall for steady-state bulk flow with no reactions (Hi = -a3 =0.1,
Bj_ = 'l.O) P2 = O).



29

| mn |

01 0 2 (0] 10 o
c; (O,r) c; (I,r) ¢; (10,r) ¢; (100,r)

Figure 11.- Development of mass fraction profile for unsteady state, diffusion controlling
with no reactions (H{ = 1.0, aj = -0.1, B; = -1.0, pZ = 0).
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